Package: AdaSampling 1.3

AdaSampling: Adaptive Sampling for Positive Unlabeled and Label Noise Learning

Implements the adaptive sampling procedure, a framework for both positive unlabeled learning and learning with class label noise. Yang, P., Ormerod, J., Liu, W., Ma, C., Zomaya, A., Yang, J. (2018) <doi:10.1109/TCYB.2018.2816984>.

Authors:Pengyi Yang

AdaSampling_1.3.tar.gz
AdaSampling_1.3.zip(r-4.5)AdaSampling_1.3.zip(r-4.4)AdaSampling_1.3.zip(r-4.3)
AdaSampling_1.3.tgz(r-4.4-any)AdaSampling_1.3.tgz(r-4.3-any)
AdaSampling_1.3.tar.gz(r-4.5-noble)AdaSampling_1.3.tar.gz(r-4.4-noble)
AdaSampling_1.3.tgz(r-4.4-emscripten)AdaSampling_1.3.tgz(r-4.3-emscripten)
AdaSampling.pdf |AdaSampling.html
AdaSampling/json (API)

# Install 'AdaSampling' in R:
install.packages('AdaSampling', repos = c('https://pyanglab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pengyiyang/adasampling/issues

Datasets:
  • brca - Wisconsin Breast Cancer Database

On CRAN:

5.04 score 11 stars 10 scripts 269 downloads 1 mentions 4 exports 75 dependencies

Last updated 6 years agofrom:c815f1bf8d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:adaSampleadaSvmBenchmarksingleIterweightedKNN

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

Breast cancer classification with AdaSampling

Rendered fromvignette.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2018-06-10
Started: 2018-05-31